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The quantum mechanics of proper open systems yields the physics that governs the local behavior of the
electron density,F(r ). The Ehrenfest forceF(r ) acting on an element ofF(r ) and the virial fieldν(r ) that
determine its potential energy are obtained from equations of motion for the electronic momentum and virial
operators, respectively. Each is represented by a “dressed” density, a distribution in real space that results
from replacing the property in question for a single electron with a corresponding density that describes its
average interaction with all of the remaining particles in the system. All bond paths, lines of maximum
density linking neighboring nuclei in a system in stable electrostatic equilibrium, have a common physical
origin in terms ofF(r ) andν(r ), regardless of the nature of the interaction. Each is homeomorphically mirrored
by a virial path, a line of maximally negative potential energy density linking the same nuclei. The presence
of a bond path and its associated virial path provide a universal indicator of bonding between the atoms so
linked. There is no net force acting on an element ofF(r ) or on an atom in a molecule in a stationary state,
andν(r ) is attractive everywhere. Thus, contrary to what has appeared in the literature, no repulsive forces
act on atoms linked by a bond path, nor on their nuclei. All atomic interactions, including those described
as nonbonded and responsible for binding in condensed states of matter, result from a local pairing of the
densities of opposite spin electrons. This local pairing, which varies throughout space and with the strength
of the interaction, should be distinguished from the notion of an electron pair, as embodied in the Lewis
model.

Definition of an Atomic Interaction Line and a Bond
Path

The response of the electron density to the interaction between
a pair of atoms is ubiquitous. It results in the formation of a
line of maximum density linking the nuclei of the two atoms
and in the formation of a surface defining their mutual boundary
which intersects this line at the point where the density attains
it minimum value.1-5 These topological features are the result
of the creation of a (3,-1) critical point (CP), a point where
the gradient vector field of the density vanishes,∇F(r ) ) 0,
and the Hessian matrix of which, composed of the nine second
derivatives of the density at the CP, yields upon diagonalization,
three eigenvalues (two negative and one positive). The eigen-
vectors associated with the two negative eigenvalues define a
two-dimensional manifold spanned by an infinite set of trajec-
tories of∇F that terminate at the CP, thereby defining a surface,
the interatomic surfaceS(r s), that separates the basins of the
two interacting atoms. The third eigenvalue is positive and its
associated eigenvector defines a unique pair of trajectories of
∇F that originate at the CP, each of which terminates at a
nucleus of one of the neighboring atoms. This pair of
trajectories defines a line through space along which the electron
density is a maximum with respect to any neighboring line,1

designated an atomic interaction line.5,6 These general properties
of the gradient vector field are illustrated in Figure 1 for the
cubic-like cluster Li14F13

-, a model for the central F in thefcc
lattice of LiF.

An interatomic surfaceS(rs) is one of zero-flux in the gradient
vector field of the electron density, the boundary condition for
the definition of a proper open system5,7

The name derives from the derivation, unique to such systems,
of the Heisenberg equation of motion for an observable from
Schwinger’s principle of stationary action.8 Proper open
systems are thus subject to the same quantum mechanical
description as is the total system of which they are a part and
they satisfy the necessary theoretical requirements for the
definition of an open system: they are bounded in real space
and the expectation values of the observables and their equations
of motion are uniquely defined.7

Proper open systems have been identified with the atoms of
chemistry, because they have been shown to recover the essential
notions associated with the atomic concept: (i) the atomic
properties are characteristic and additive, summing to yield the
corresponding values for the total system; (ii) they are as
transferable from one system to another as are the forms of the
atoms in real space; that is, as transferable as are the atomic
charge distributions. In particular, atomic and group properties
predicted in this manner have been shown to recover the
experimentally determined contributions to the volume, energy,
polarizability, and magnetic susceptibility in those cases in
which the group contributions are essentially transferable, as
well as additive.5,9

For a system in a stationary state, the wave function and the
electron density it determines are such as to minimize the total
energy. Thus, the appearance of an atomic interaction line is
associated with the minimization of the energy of interaction
between a pair of atoms. Its presence is a necessary condition
for two atoms to be bonded to one another, the situation obtained
when the initially attractive Hellmann-Feynman forces acting
on the approaching nuclei, and resulting from the accumulation
of electron density associated with the formation of the atomic
interaction line, vanish and attractive restoring forces act on∇F(r )‚n(r ) ) 0 ∀r ∈ S(r s) (1)
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the nuclei for any displacement from their final equilibrium
positions. The presence of a (3,-1) CP and its associated
atomic interaction line in such a stable state of electrostatic
equilibrium is thus both necessary and sufficient for the two
atoms to be bonded to one another in the usual chemical sense
of the word. The atomic interaction line is in this case called
a bond path and the associated (3,-1) CP is called a bond CP5,6

(Figure 1).
A molecular graph is defined as the network of bond paths

that link neighboring nuclei. For stable structures, its form is
invariant to displacements of the nuclei from their equilibrium
positions and a molecular structure is defined as an equivalence
class of molecular graphs.4 This equivalence relation leads to
a definition of structural stability and to the demonstration that
a change in structure can occur by only one of two mecha-
nisms: through the bifurcation or conflict mechanism.4 Both
the static and dynamic aspects of the structural theory have been
demonstrated to be of universal applicability, to any and all
types of atomic interactions, from weak to strong, and as applied
to densities obtained from both experiment and theory. The
literature of these applications is too extensive to review here,
but papers illustrative of application of the theory to the
following types of interactions are included: hydrocarbons,10

electron deficient molecules,11 metals and alloys,12,13 ioni-
cally14,15 and covalently16,17 bonded crystals, van der Waals
molecules,18 hydrogen bonded systems,19-21 and so-called
“nonbonded interactions”,22 as found in molecular and atomic
crystals. The use of a bond path to denote a bonded interaction
frees the definition of bonding from the constraints of the Lewis
electron pair model, a model that is unable to describe the
bonding in metals and in condensed phases composed of closed-
shell atoms or neutral or charged molecules.

The purpose of this paper is to propose that the presence of
a bond path provides a universal indicator of bonding between
the atoms so connected. The argument is based on the physics
that governs the local behavior of the electron density, as
provided by the quantum mechanics of an open system. Its
justification requires clarification of discussions that have
appeared in the literature suggesting that the presence of a bond

path in certain systems is actually indicative of a “repulsive
interaction” rather than a bonded interaction. These statements
have appeared with reference to bond paths between neighboring
“sterically interacting” atoms,23 between atoms experiencing
nonbonding interactions24 or involving charged atoms in
nonclassical structures,25,26and between anions in a crystal, the
arguments in the latter case being based upon an electrostatic
model of the lattice energy.27 The present paper affirms the
definition of a bond path as signifying that the atoms so linked
are indeed bonded to one another, by demonstrating that the
qualitative arguments and classical models presented to argue
otherwise, are not in accordance with the quantum mechanical
description of the bond path that is obtained from the theorems
for an open system expressed in their local form.

Two forces are involved in the discussion of bonding, the
Hellmann-Feynman force exerted on the nuclei and the
Ehrenfest force exerted on the electron density. It is the virial
of the latter force that determines the virial field, a local
description of a system’s potential energy, including that of a
crystal. The virial field and the electron density yield a
structural homeomorphism.28 This implies that eVery bond path
is mirrored by aVirial path, a line linking the same neighboring
nuclei, along which the potential energy density is maximally
negatiVe, i.e., maximally stabilizing, with respect to any
neighboring line. It is this homeomorphism that underlies the
energy lowering that accompanies the appearance of an atomic
interaction line in general, and a bond path in particular. The
discussion of the mechanics of a bond path is prefaced with a
review of the underlying theorems: the Ehrenfest force theorem,
the virial theorem, and the Hellmann-Feynman electrostatic
theorem, as derived from the Heisenberg equation of motion
for the appropriate operator.

Atomic and Local Theorems Governing Atomic
Interactions

The theory of atoms in molecules complements the quantum
mechanical theorems that govern the properties of a total system
by providing both atomic and local statements of each theorem

Figure 1. Contour map and gradient vector field map of the electron density in the middle plane of the cubic-like cluster Li14F13
- containing a

central F ion,q(F) ) -0.94e, Li being the central ion in the two outer planes. The contour map is overlaid with the intersections of the interatomic
surfaces with this plane and with the atomic interaction lines, which are bond paths in this equilibrium geometry. In the map displaying the trajectories
of ∇F, each nucleus acts an attractor and the region of space spanned by the trajectories that terminate at a given nucleus define its atomic basin,
the basin for the central F being bounded by 18 interatomic surfaces. The (3,-1) CPs for the bond paths linking the central F are indicated by dots.
Each (3,-1) CP serves as the origin for the unique pair of trajectories that define the bond path and as the terminus for the trajectories of the
two-dimensional manifold defining the surface of zero-flux. By symmetry, the diagrams illustrate that the central F is linked by bond paths to the
6 nearest neighboring Li ions and to the 12 next nearest F ions. The central F is in contact with 18 other ions. A (3,+1) CP is found at the
intersection of the interatomic surfaces of the central F, an outer F and a Li which form bonded three-membered rings. The outer contour has the
value 0.001 au and the remaining contours increase in value in the order 2× 10n, 4 × 10n, and 8× 10n, with n beginning at-3 and increasing
in steps of unity.
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obtained from the Heisenberg equation of motion for a given
observable.5,7 For example, the equation of motion obtained
for the electronic momentum operatorp̂ yields the Ehrenfest
force theorem, whereas the action operator, the dot product of
the momentum and position operators for an electron,r̂‚p̂, yields
the virial theorem. One of the important consequences of this
application of the principle of stationary action to an open
system is that both the atomic and local forms of the theorem
for any observable are expressed in terms of a “dressed” density.
This is a density distribution in real space for the property in
question, force or energy for example, that results from replacing
the property for a single particle at some point in space with a
corresponding density that describes its average interaction with
all of the remaining particles in the system.

The manner in which this averaging is done is identical to
that used to define the electron density which is itselfN times
the probability of finding a particle at some point as determined
by the average motions of all the remaining electrons. That is,
ψ*ψ is integrated over the coordinates of the remaining electrons
and summed over all spins, an operation denoted by the symbol
∫dτ′ as in eq 2:

That all property densities are defined in a like manner follows
directly from the field theoretic derivation of the principle of
stationary action wherein a generator, the observable causing
the change in the system, acts on a single field point. To quote
Schwinger, “The essence of field theory is to provide a
conceptually simpler and more fundamental description by
depending on the particle as the basic entity.”29

The Ehrenfest Force. A theorem for an open system and
its local form necessarily involves fluxes of a corresponding
current density through the surface bounding the system, whether
this be a surface of zero-flux for an atom in a molecule, or the
surface bounding an infinitesimal volume element, the properties
of which are described in the local form of the theorem. This
is illustrated for the primal force theorem, the Heisenberg
equation of motion for the momentum operator, or the Ehrenfest
force theorem.30

The atomic statement of the Ehrenfest force is given in eq 3:

The currentj (r ) is the electronic velocity density and when
multiplied by the electronic mass, gives the momentum density
at the pointr . The integral on the left hand side (LHS) of eq
3 gives the time rate of change of the total momentum of the
electron density in the basin of the atomΩ, that is, the force
acting on the atom. The first term on the right hand side (RHS)
of eq 3 comes from the averaging of the commutator (i/p)[Ĥ,p̂].
It is the atomic integral of the Ehrenfest forceF(r ,t) acting on
the electron density at the pointr :

The operator∇V̂ represents the gradient taken with respect to
the coordinates of the electron located at the pointr , of the
total potential energy operatorV̂ that describes all of the
interactions within the system. Thus,-∇V̂ is the operator
describing the force exerted on the electron at positionr by all
of the remaining electrons and the nuclei in the system, each
of the particles being held fixed in some arbitrary configuration.

The averaging of this operator implied by∫dτ′ in eq 4 yields
the force densityF(r ,t), the force exerted on the electron density
at r by the nuclei and by the average distribution of the
remaining electrons in the total system. Note that the definition
of the force density in eq 4 differs from the definition of the
electron density in eq 2 only by the inclusion of the force
operator between the state functions. The Ehrenfest force30 is
likened to a classical force because the operator-∇V̂, defined
in terms of the gradient of a potential, is identical to the
expression for the classical force exerted on an electron atr .

The second term on the RHS of eq 3 is a measure of the
force exerted on the atom arising from the flux in the momentum
current density through its surface. In eq 3, this “momentum
flux” density31 is expressed in terms of the quantum stress tensor
σ(r ):

It has the dimensions of an energy density, that is, force per
unit area, and dS‚σ(r ) is thus the force exerted on the element
of surface dS. The quantum stress tensor, first introduced by
Schrödinger,32 plays a dominant role in determining the
mechanics of the electron density and a proper open system.
The surface force vanishes for the total system with boundaries
at infinity. The local form of the force theorem that governs
the motion of an infinitesimal volume element dr and obtained
directly from Schro¨dinger’s equation is

an expression that is term for term, a local form of the atomic
theorem, eq 3.

The use of the Ehrenfest force theorem in the interpretation
of the mechanics of the electron density is facilitated by noting
that it is analogous in both its local and atomic forms to a basic
postulate of classical continuum mechanics called the momen-
tum principle.33 This principle states that the time rate of change
of the total momentum of a given set of particles, forming a
part Ω of some total system, equals the vector sum of all the
external forces acting on the particles of the set, provided
Newton’s third law of action and reaction governs the internal
forces. This statement of momentum balance leads to the
equation

which equates the temporal change in the momentum density
Fv (F the mass density andv the velocity density) over the region
Ω to the action of the body forces per unit volumef acting
within Ω and the surface forcest acting per unit area of the
surface boundingΩ. Because the volumeΩ is arbitrary, the
momentum balance applies to an infinitesimal volume to yield
Cauchy’s first equation of motion33

whereT is the classical stress tensor. The classical expressions
for the force acting on a continuous system, of finite or
infinitesimal extent, eqs 7 and 8, are equivalent in form and
physical content to the corresponding quantum mechanical
expressions, eqs 3 and 6.

The present use of the equation of motion forp̂ applies to a
stationary state where the acceleration∂J(r )/∂t, or dv/dt in the
classical case, is zero and the system is in a state of static

F(r ) ) N∫dτ′ψ*ψ (2)

m∫Ωdr∂j (r )/∂t ) ∫Ωdr∫dτ′Ψ*(-∇V̂)Ψ + IdS(r s)‚σ(r )

(3)

F(r ,t) ) N∫dτ′Ψ*(-∇V̂)Ψ (4)

- {jp(r ) + cc} ) σ(r ) ) (p2/4m)∫dτ′{(∇∇Ψ*)Ψ -

∇Ψ*∇Ψ - ∇Ψ∇Ψ* + Ψ*∇∇Ψ} (5)

m∂j (r )/∂t ) F(r ,t) + ∇‚σ(r ) (6)

∫Ωdr∂Fv/∂t ) ∫Ωdrf + IdS(r s)‚t (7)

Fdv/dt ) f + ∇‚T (8)
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equilibrium. In this case, the Ehrenfest forceF(r ), or the body
forcef, is balanced by the divergence of the corresponding stress
tensor,

and one has the important result that the Ehrenfest force acting
on the electron density over the basin of the atom, the quantity
F(Ω), is balanced by the flux in the momentum current density
through its surface,

Thus, for a system in static equilibrium, classical or quantum,
the force determined by the gradient of the potential that acts
on the density locally or over a region of space, is balanced by
a momentum flux density, as described in terms of the stress
tensor. Because this result is obtained for a classical as well as
for a quantum system, one cannot argue that the classical-like
force F(r ) is balanced by a quantum counterpart∇‚σ(r ). It is
instead the mechanical description of a state of static equilibrium
in a continuous medium.There are no net forces acting on an
element of the electron density for a system in a stationary state.

The Virial Field and the Potential Energy Density. It is
the virial of the Ehrenfest force that determines the electronic
potential energy of a molecule or crystal, a result obtained from
the virial theorem is the equation of motion for the generator
r ‚p. For a stationary state, a local form of the virial theorem
is5,34

where the terms on the RHS originate with the commutator and
those on the LHS are derived from the current density for the
generatorr ‚p. The kinetic energy densityG(r ) is the positive
definite form (p2/2m)p̂+‚p̂ andr ‚F(r ), the virial of the Ehrenfest
force density can alternatively be expressed as-r ‚∇‚σ(r ) using
eq 9. The virial fieldν(r ) is defined in terms of the stress tensor
in two equivalent ways:

Integration of eq 11 over an atomΩ yields the atomic virial
theorem-2T(Ω) ) ν(Ω), as obtained from the statement of
stationary action.5,7 The divergence term in eq 12 vanishes upon
integration over the space of the total system (it yields the virial
of the surface forces) to obtain the total virialν,

which satisfies the virial theorem for the total system-2T )
ν. The total virialν equalsV, the total potential energy of the
system that appears in the expression for the total energyE )
T + V, and the virial of the Hellmann-Feynman forces exerted
on the nuclei,35,36 FR ) -∇RE, as given in eq 14:

The term in eq 13 corresponding to the virial of the nuclear-
electron force yields〈V̂ne〉 and the virial of the forces that the
nuclei exert on the electrons. Summing this latter virial over
the nuclei yields the negative of the force the electron density
exerts on all the nuclei, a term that reduces further to yield the
terms〈V̂nn〉 - ∑XR‚FR in eq 14.5

It is the negative of the virial fieldν(r ), defined in eq 12,
that is structurally homeomorphic with the electron density.28

The field -∇ν(r ) exhibits local attractors at the positions of
the nuclei that are linked by unique pairs of trajectories
associated with its (3,-1) CPs to yield a molecular graph
identical to the one defined by the∇F(r ) field. TheVirial field
is negatiVe eVerywhere and there are no locations or regions
where the electronic potential energy is repulsiVe.

The Hellmann-Feynman Force and Electrostatic Equi-
librium. For the total system in a stationary state, the
Heisenberg equation for an operator that contains a derivative
with respect to a parameters contained in Ĥ yields the
Hellmann-Feynman theorem35,36

Whens is a nuclear coordinateXR, eq 15 gives the Hellmann-
Feynman electrostatic theorem

where FR is the force exerted on nucleusR by the electron
density and the remaining nuclei. The integration of the forces
acting on the nuclei over a range of nuclear coordinates
determines the Born-Oppenheimer potential energy surface and
the points in nuclear configuration space whereFR ) 0 for all
the nuclei determine the extrema in this surface.

A local minimum in the energy surface denotes a stable state
of electrostatic equilibrium with respect to the forces acting on
the nuclei. The minimum serves as an attractor in the negative
of its associated gradient vector field, the Hellmann-Feynman
force field. That is, all trajectories representing the forces acting
on the displaced nuclei terminate at the attractor. Thus, the
forces acting on the nuclei for any displacement from equilib-
rium restore the system to its equilibrium geometrysthe forces
are attractive. If the energy minimum is of a depth greater than
the zero point energy with respect to any and all of the nuclear
displacements, then the corresponding geometry is referred to
as an equilibrium geometry and in general, all nuclear configu-
rations associated with motions within the potential well yield
the same molecular graph.

The Mechanics of Atomic Interactions

The formation of an interatomic surface and a bond path is
a result of a competition between the perpendicular compres-
sions of the density toward the bond path and its expansion in
a direction parallel to the path away from the interatomic surface.
These stresses in the density are determined by the correspond-
ing perpendicular and parallel curvatures that sum to equal∇2Fb,
the trace of the Hessian of the density atr c, which deviates the
position of the bond CP.6 The compressions are given by the
duo of negative eigenvalues of the Hessian atr c which lead to
a concentration of electronic charge along the bond path,
whereas the expansion is given by the positive eigenvalue which
leads to a depletion of charge in the surface and to its separate
concentration in the basins of the neighboring atoms. The sign
of ∇2Fb determines which of these two competing effects is
dominant.

Because of the appearance of∇2F(r ) in the local expression
of the virial theorem, which can be written as in eq 17,

the competing behavior of the curvatures can be related to the
mechanics of the interaction. Interactions for which∇2F(r c) <

F(r ) ) N∫dτ′ψ*(-∇V̂)ψ ) -∇‚σ(r ) (9)

F(Ω) ) ∫Ωdr F (r ) ) - IdS(r s)‚σ(r ) (10)

2G(r ) + r ‚F(r ) ) ∇‚{r ‚σ(r )} + (p2/4m)∇2F(r ) (11)

ν(r ) ) - r ‚∇‚σ(r ) + ∇‚{r ‚σ(r )} ) Tr σ(r ) (12)

ν ) ∫ν(r ) dr ) N∫dr∫dτ′{ψ*(-r ‚∇V̂)ψ} (13)

ν ) 〈V̂ne〉 + 〈V̂ee〉 + 〈V̂nn〉 + ∑R XR‚∇RE )

V - ∑R XR‚FR (14)

- 〈ψ|[Ĥ,∂/∂s]|ψ〉 ) 〈ψ,(∂Ĥ/∂s)ψ〉 ) ∂E/∂s (15)

〈ψ,(-∇RV̂)ψ〉 ) -∇RE ) FR (16)

(p2/4m)∇2F(r ) ) 2G(r ) + ν(r ) (17)
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0, shared interactions, are dominated by the lowering of the
potential energy resulting from the charge concentrated between
the nuclei along the bond path. Closed-shell interactions for
which ∇2F(r c) > 0 are dominated by the kinetic energy in the
region of the interatomic surface, a result of the tightening of
the curvature of the density along the bond path. They achieve
their stability as a result of the electronic charge being separately
concentrated within the atomic basins, rather than shared. The
electronic energy densityEe(r ), which integrates to the total
electronic energy, is given by5

where the final equality shows that the energy density obeys a
local virial theorem in terms of the kinetic energy densityK(r )
expressed in terms of the operator-(p2/2m)∇2, the form
appearing in Schro¨dinger’s equation and related toG(r ) by the
expression

Unlike G(r ) > 0, K(r ), as doesEe(r ), exhibits both negative
and positive values and because of the relation ofK(r ) and
Ee(r ) to the Laplacian ofF(r ), as shown in eq 19, they exhibit
atomic shell structure.Ee(r ) is the energy density Hb defined
by Cremer and Kraka.37,38 The atomic interactions are thus
characterized byFb, ∇2Fb, νb, and Gb, the values of the
parameters at the bond critical point. Their contrasting values
for shared and closed-shell interactions are illustrated in Table
1 for the isoelectronic molecules C2 and LiF, respectively.

Closed-Shell Interactions. In general, conceptual difficulties
arise in the association of a bond path with closed-shell rather
than shared interactions, as exemplified by nonbonded23-25 and
anion-anion interactions27 being described as repulsive. In
closed-shell interactions the requirement of the Pauli exclusion
principle leads to the removal of density from the region of
contact of the interacting atoms, the interatomic surface. The
positive curvature ofF(r ) along the bond path is dominant,∇2Fb

> 0, and because the density contracts away from the surface,
the interaction is characterized by a relatively low value ofFb.
These interactions are thus dominated by the kinetic energy in
the region of the bond CP, withGb > |νb| and the energy density
Eb

e > 0. The dominance of the kinetic energy is placed on an
absolute footing by the quantityGb/Fb, the kinetic energy per
electron which in general is in excess of unity for closed-shell
interactions (compare LiF and C2 in Table 1). It is important
to note that a positive value forEb

e can result only from the
kinetic energy density exceeding the magnitude of the potential
energy density. Thus, becauseν(r ) < 0, a positive value for
Eb

e does not indicate a repulsive potential energy of interaction
but instead one wherein the potential energy, while stabillizing,
is locally dominated by a larger kinetic energy. Closed-shell
interactions are found in van der Waals molecules,18 hydrogen
bonds,19-21 ionic bonds,14 and in molecular crystals.22

van der Waals and Nonbonded Interactions.The relatively
weak interactions between closed-shell neutral, nonpolar mol-
ecules that account for the existence of condensed phases of
such substances are sometimes referred to as nonbonded
interactions to distinguish them from the stronger valence
interactions associated with the pairing of electrons as per the
Lewis model. The term nonbonded is also used to describe
supposed “repulsive” interactions in molecules, the term used,
for example, by Cioslowski and Mixon to describe the interac-
tions between pairs of hydrogen atoms bonded to carbon atoms
in 1,4-positions in planar benzenoid hydrocarbons24 and the
steric crowding effects in perhalogenated cyclohexanes.23

The weak interactions responsible for the binding present in
van der Waals molecules give rise to atomic interaction lines
(bond paths in the equilibrium structures) with the characteristics
of closed-shell interactions as described above.5,18 Because such
interactions are primarily the result of a correlation of the
motions of the electrons on the two interacting species, their
description requires the use of densities obtained from correlated
wave functions. MP2 calculations using large basis sets
including f functions provide good agreement with the experi-
mental geometries and binding energies of van der Waals
molecules formed between the following species: Ar, C2H2,
CO2, OCS, and SO2. The bond critical point data for the weak
interactions in these molecules have been determined and are
found to exhibit all of the hallmarks of closed-shell interac-
tions,18 as typified by the data for the bond path in the Ar2

molecule given in Table 1.
The interaction present in Ar2 can be considered prototypical

of a nonbonded interaction, its potential energy curve being
among the first to be approximated by fixing the parameters
empirically from crystal and second virial coefficient data.39

The most recent theoretical and experimental data describe the
Ar2 interaction in terms of a Morse potential with a well depth
of 4.49 (-4 t 10-4) au, an equilibrium separation of 7.13 au,
and a frequency of 30.5 cm-1 which yields a zero-point energy
of 7.0 (-5) au.40 The depth of the well is sufficient to support
at least three vibrational quanta over the zero-point energy level
and attractive restoring forces act on the nuclei during these
displacements. A collision resulting in an energy transfer
sufficient to reduce the internuclear separation to less than 6.3
au would result in dissociation, because the system is no longer
bound within the potential well and forces of repulsion act on
the nuclei which are now linked by an atomic interaction line.
The use of a Morse curve to describe the interaction in Ar2 and
its attendant nuclear motions shows that aside from a difference
in the well depth, the potential energy of interaction exhibits
the same fundamental form as does that for a bound diatomic
state resulting from the “pairing of valence electrons”. Both
interactions result in the formation of bond and virial paths that
lead to the balancing of the forces of repulsion on the nuclei
and to the lowering of the molecule’s total energy, respectively.

Solid argon forms anfcc close-packed structure, which by
the Poincare`-Hopf relation for solids,16 requires each argon

TABLE 1: Bond Critical Point Data in Atomic Units ( -x ) 10-x)

system R De Fb ∇2Fb Gb Gb/Fb νb Eb
e

C2(
1∑1g

+ )a 2.354 2.03 (-1) 3.20 (-1) -6.55 (-1) 2.89 (-1) 0.90 -7.42 (-1) -4.53 (-1)
LiF(1∑+)a 2.964 2.14 (-1) 7.60 (-2) +7.24 (-1) 1.61 (-1) 2.12 -1.42 (-1) +1.98 (-2)
Ar2(

1∑1g
+ )b 7.133 6.10 (-4) 2.89 (-3) +1.22 (-2) 3.88 (-3) 1.34 -3.05 (-3) +8.29 (-4)

FcsFe
c 5.201 1.32 (-2) +5.91 (-2) 1.41 (-2) 1.08 -1.35 (-2) +6.40 (-4)

Ar-CO2
d 6.513 1.08 (-3) 3.78 (-3) +1.65 (-2) 1.75 (-2) 4.64 -1.65 (-2) +1.02 (-3)

a QCISD(SCVS)/6-311++G2df. b MP2/MC+sp3d2f.18 c Between center F and F in edge of cubic cluster Li14F13
-, HF/6-31G*.42 d MP2/

TZ2P+df for CO2.18

Ee(r ) ) G(r ) + ν(r ) ) - K(r ) (18)

K(r ) ) G(r ) - (p2/4m)∇2F(r ) ) - Ee(r ) (19)
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atom to form bond paths with its 12 nearest neighbors. The
interactions in the crystal are of the closed-shell type as
described for the argon dimer, although somewhat weaker. The
experimental cohesive energy for solid argon, with a nearest
neighbor distance of 7.11 au compared to 7.13 in the dimer,
expressed as the energy per atom and extrapolated to 0 K and
zero pressure, is 2.9 (-3) au yielding an interaction energy per
bond path that is 56% of that found in the dimer. The cohesive
energy of solid argon results from the interaction of each atom
with its 12 nearest neighbors, as indicated by the 12 bond paths.
In this situation one must abandon the Lewis electron pair model
and replace it with a universal indicator of bonding, as provided
by the presence of a bond path and its associated virial path.
Each bond path is a result of the correlative accumulation of
electron density between the nuclei sufficient to balance the
forces of repulsion on the argon nuclei and result in attractive
restoring forces for all displacements from their equilibrium
positions.

Note that an interaction resulting from the action of dispersion
forces results in the accumulation of electron density between
the nuclei and hence to the formation of a bond path. As first
emphasized by Feynman in his 1939 paper,35 dispersion forces,
with their R-7 dependence for the approach of two neutral
spherical atoms, result from a polarization of the density on
each of the approaching atoms toward the other (this inward
polarization of both atomic densities is a static effect for a fixed
R, as are all properties for a stationary state), thereby leading
to an increasing accumulation of density between the nuclei
upon their approach and to the formation of a bond path. This
correct description of what happens to the electron density in
real space differs from the often-quoted description of relating
the dispersion energy to the interaction of induced oscillating
dipoles on each atom. This latter description is an attempt to
obtain a real space picture of the second-order perturbative
description of the dispersion energy resulting from the electron-
electron correlation, an effect determined by the pair density
defined in the six-dimensional configurational space of two
electrons. The net effect of this correlation in real space is as
described by Feynman35 and as previously illustrated in terms
of a density difference map for the approach of two hydrogen
atoms separated by 8 au.5

The bond paths associated with the nonbonded repulsive
interactions between the hydrogen atoms in the planar ben-
zenoids24 and between the chlorine and bromine atoms in
perhalogenated cyclohexanes23 exhibit the same characteristics
as those found for Ar2: low values forFb and∇2Fb > 0. These
bond paths are found for equilibrium geometries, a finding that
requires all nuclear displacements be governed by attractive
restoring forces, including the relative motions of the protons
or halogen nuclei. Cioslowski and Mixon correctly indicated
the advantage of using atomic interaction lines to determine
the presence of links between atoms that classically would be
considered nonbonded.23 Only atoms linked by an atomic
interaction line share an interatomic surface and are in contact.
Thus, the linking of the three axial chlorines or bromines by a
cyclic structure of bond paths on each side of the perhalogenated
cyclohexane ring is not found for the case of smaller fluorines.
That standard geometrical parameters are changed to accom-
modate the larger halogen atoms does not imply the presence
of repulsive forces in the final equilibrium geometry. Contrib-
uting to the lowering of the energy in attaining this geometry
is the formation of the bond and associated virial paths between
the axial Cl or Br atoms, as made possible by their larger and
more diffuse charge distributions compared to that of a bound

F atom, the interactions of which are identical to those that
provide the cohesive energy of solid argon. The question is
not how the final geometry is attained in some mental process
involving passage over a repulsive barrier, a situation that is in
fact common to most chemical changes, but rather how the
mechanics determines the final distribution of charge.

Bond paths between chlorine atoms with similar character-
istics to those found in the substituted cyclohexanes are found
to link the atoms of neighboring molecules in solid molecular
chlorine.22 The Cl-Cl separation in the crystal exceeds that in
the perchlorinated molecule by 0.05 Å, resulting in small
reductions in the values ofFb and∇2Fb between the two systems.
Because of the presence of this dominant directed intermolecular
bond path in the solid, molecular chlorine forms a layered
structure, as opposed to the simpler structure anticipated on the
basis of a nondirectional van der Waals-type potential.41 This
principal interaction in the crystal is present in and accounts
for the formation of the gas-phase dimer of Cl2.22 In fact, the
Laplacian of the electron density dictates the angle of approach
of the two monomers in the formation of the dimer through an
alignment of the charge concentration on one atom with a center
of charge depletion on another, which produces an angle that
is preserved in the solid, giving rise to its layered structure.
Thus, a bond path, responsible for the formation of the Cl2 dimer
and for the cohesive energy of solid chlorine, is described by
Cioslowski et al.23 as indicative of a repulsive interaction when
present in perchlorocyclohexane.

The phrase “attractor interaction lines between nonbonded
atoms” used by Cioslowski et al.23 is an oxymoron and makes
clear that they restrict their definition of bonding to the Lewis
model of the electron pair bond. Any bond paths found between
atoms not formally linked using the classical model are termed
nonbonding and repulsive, an interpretation that would preclude
the existence of condensed states of matter composed of closed-
shell neutral molecules. Cioslowski and Mixon24 would replace
the universal definition of bonding based on the topologies of
the electron density and virial field with the statement “The
term bond path should be reserved for the interaction lines
describing ordinary strong bonds.” The classification of atomic
interaction lines is determined by physics, not by subjective
judgements of relative bond strengths.

Bond Paths between Ions in Crystals.An ionic interaction
is classified as one in which the atomic species exhibit charges
approaching the values anticipated for the corresponding closed-
shell ions, a condition that ensures that the values ofFb and
∇2Fb at the associated bond critical points are typical of closed-
shell interactions. The data given for LiF in Table 1 are
illustrative of this type of interaction, the charges on the ions
being(0.93e. The electron density in an ionic system is very
localized within each atomic basin, a result of the corresponding
localization of the Fermi correlation. Thus, the central fluorine
in the cubic-like cluster Li14F13

- provides an excellent model
of fluorine in an fcc lattice, the optimized cluster exhibiting
only a slight compression compared to the unit cell in the
crystal.42 The central F has a charge of-0.94e and, as seen
from Figure 1, is linked by bond paths to not only the 6 nearest
neighboring lithiums, but also to the 12 neighboring fluorines,
with CP values given in Table 1. The linking of neighboring
anions in an ionic crystal by bond paths, while not a topological
necessity,15 is a feature frequently encountered; in the experi-
mental densities of LiF27 and in theoretical densities of LiF,22

MgO,43 and LiI.15 Luaña, Costales, and Penda´s15 performed a
topological analysis of 120 ionic perovskites of the form AMX3.
In addition to the bond CPs for the M-X and A-X interactions,
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they find bond CPs linking neighboring anions for X) F, Cl,
and I. Bond paths are also predicted to link neighboring cations
in the A position, but in only two cases, CsSrF3 and CsBaF3,
and with the smallest of all theFb values in the set of 120
crystals. The presence of the A-A bond paths is a consequence
of two distinctive features: a very large A to X size ratio and
a large cell side lengtha due to the large size of M, thus leading
to a contact of the Cs+ ions. In general, the more diffuse
distribution of density and hence greater ionic radius of anions
compared to cations results in anion-anion contacts in the
crystal and the formation of associated bond paths, as exempli-
fied in Figure 1. The values ofFb for the CPs between ions of
like charge are found to be smaller than the values for the
primary anion-cation interactions with the exception of that
for Li-I compared to I-I, a result of the very tight density of
Li+ compared to its very diffuse nature in I-.

Abramov27argues that the presence of bond paths for these
secondary interactions should not be taken to imply that the
ions so connected are bonded to one another. He based his
argument on the result that the calculation of the lattice energy
of LiF in terms of the electrostatic Madelung energy coupled
with a short range noncoulombic repulsive contribution yields
a result in reasonable agreement with the experiment. He uses
an experimental pseudoatom charge density to calculate the
Madelung energy and the experimental value of the lattice
parametera. The valence density population parameters are
treated as variables to improve the agreement of the calculated
result with the experiment. Because this model does not include
any term representing an attractive potential between the
neighboring fluorines, he concludes that the F-F interaction
must be repulsive. “... an unknown specific bonding interaction
between neighboring ions, cannot counterbalance the strong pair-
wise F-F electrostatic repulsive interaction and thus lead to
the formation of a chemical bond between these ions.”27 This
conclusion is incorrect for two principal reasons: the inadequacy
of the model and the use of its associated classical notions of
force and energy in the discussion of the electron density, the
properties of which are determined by quantum mechanics.

The model assumes a crystal to be composed of spherical
ions in contact, thereby limiting the electrostatic potential energy
to point charge terms of the formqiqj/Rij . The model is thus
incapable of describing or accounting for any electrostatic
contributions to the potential arising from distortions of the
spherical ion densities. This failure of the model remains
unaltered by the author’s use of atomic charges obtained from
a fit of an experimental prodensity which predicts the presence
of bond paths, a failure that can be directly demonstrated using
the cubic cluster. If a spherical density distribution for the
central F is assumed and the optimized geometry is used, the
attraction of its 9.940 electrons by the 14 Li and 12 F nuclei is
found to be less stable than the actual interaction by-0.3688
au, which is the energy determined by averaging the appropriate
operators over the density within the basin of the central F atom,
a quantity determined by the theory of atoms in molecules. Thus,
the distortion of the central ion’s charge distribution from
spherical symmetry caused by the formation of the bonds paths,
contributes to the lowering of the electrostatic energy of
interaction. In any event, the simple classical model is known
to give a reasonable account of the lattice energy of ionic crystals
and the answer obtained by Abramov for the experimental lattice
constant is a foregone conclusion using any reasonable set of
charges, which were in any event, treated as parameters.

The force that determines whether a system is in electrostatic
equilibrium is the Hellmann-Feynman force acting on the

nuclei. This force is zero for all of the nuclei in a crystal in an
equilibrium geometry. This is not a trivial result of symmetry
for an fcc lattice as suggested by Abramov,27 because the
displacement of any ion results in a restoring force returning it
to its equilibrium position. Thus, attractive restoring forces are
the only ones operative in a bound state and these are present
only when the nuclei are displaced from equilibrium. If
repulsive forces were present, the crystal would be unstable and
would either atomize or distort to an equilibrium geometry of
lower energy. To take a definite example, there is sufficient
accumulation of density between the central F nucleus and each
of its 12 neighboring fluoride nuclei in the cubic cluster to not
only balance the attendant forces of repulsion between them,
but to also create an attractive restoring force when the central
ion is displaced relative to them, a result verified by the absence
of any imaginary vibrational frequencies for the minimum
energy geometry. There is no property of the crystal to suggest
the existence of “the strong pair-wise F-F electrostatic repulsive
interaction” as suggested by Abramov.27

Abramov refers not to forces acting on the nuclei but to the
electrostatic repulsive force acting between neighboring fluoride
ions in the crystal treated as point charges, the termqFqF/a2, or
to the corresponding repulsive contribution to the potential
energy, qFqF/a. Such terms do not arise in the quantum
mechanical expression for the energy of the crystal which
determines the energy of the electrons moving in the field of
the fixed nuclear lattice and thus consists of both kinetic and
potential energy contributions. The individual contributions to
the potential energy are as outlined in eq 14.

It is the Ehrenfest force and not just the electrostatic force
that governs the motion of the electrons and the distribution of
electron density,F(r ), eq 9. As discussed above, this force is
represented by a dressed density that describes the average
interaction of an element of electronic charge with all of the
remaining particles in the system, including the forces derived
from the electrostatic potential. In a stationary state this force
is balanced by the divergence of the stress tensor and no net
force acts on an element of the density nor on an atom or ion
in a crystal: the electron density distribution is at equilibrium
for any configuration of the nuclei. The value of the balancing
force-∇‚σ(r ), eq 9, can however, be used to provide a measure
of F(r ), whose balancing governs the formation of a bond path
and whose virial determines the potential energy of the crystal.
A large attractive contribution toF(r ) yields a correspondingly
large stabilizing contribution toν(r ).

Becauseν(r ), the potential energy density, eq 12, is negative
everywhere, the total virialν, eq 13, is also negative, a result
required for a system governed by Coulombic forces: the virial
theorem states that-2T ) ν, and becauseT > 0, ν must be
negative. There are no repulsive contributions to the total
potential energy locally or from atoms or ions within a system,
as determined byν(r ) or its atomic averages. Only an excess
electronic kinetic energy can lead to repulsions within the
system, but these appear as Hellmann-Feynman forces of
repulsion acting on the nuclei; the electronic potential energy
is always stabilizing. It is of course, the virial theorem that
ties these effects together:

where the final term is the contribution to the virial from the
Hellmann-Feynman forces acting on the nuclei. For a system
in equilibrium these forces vanish,ν equals the total potential

-2T ) ν ) V - ∑R XR‚FR (20)
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energyV and 2T ) |V|. However, if forces of repulsion act on
the nuclei, 2T exceeds|V| and the increase in the kinetic energy
is balanced by the virial of the repulsive forces. Coppens points
out that the use of the point charge model to determine the
cohesive energy of a crystal assumes the kinetic energy of the
electrons to be the same for the crystal as for the isolated ions.44

Thus, the model does not satisfy the virial theorem, becauseT
is required to increase by an amount equal to the magnitude of
the decrease inE on forming the crystal, and the model should
not be used to discuss the mechanics of bonding. One thus
returns to the quantum mechanical result that the only forces
acting within a molecule or crystal are the forces exerted on
the nuclei, and their appearance as forces of repulsion is a result
of twice the electronic kinetic energy exceeding the magnitude
of the potential energy, not as a result of the presence of a
repulsive potential energy.

In summary, the virial of the Ehrenfest force acting on the
density along the line of neighboring fluorine nuclei in the
cluster or in a crystal is sufficiently stabilizing to link the nuclei
with a line of maximally negative potential energy density, a
virial path. Because the electron density is homeomorphically
determined by the virial field, the presence of the virial path
yields a line of maximum electron density, a bond path, the
charge accumulation of which leads to the balancing of the
Hellmann-Feynman forces and results in a state of electrostatic
equilibrium between the two nuclei. The two atoms are bonded
to one another.

These statements are illustrated using the central fluorine in
the cubic cluster. Any displacement of the ion from its central
position results in a positive restoring force acting on its nucleus.
It is bound. The only attractive contributions to the potential
energy in a molecule or crystal arise from the interactions of
the nuclei with the electron density. The interaction of the
electron density of the central F with its own nucleus and with
the remaining nuclei in the cluster yields a total attractive
potential energy of-537.265 au. The sum of the electron-
electron and nuclear-nuclear repulsive energies is+337.821
au to yield a total electronic potential energy of-199.444 au,

a value equal to twice the total energy of the central fluorine.
Its total energy is more stable than that of an isolated fluoride
ion by 233 kcal/mol, a value that also determines the relative
increase in its electronic kinetic energy. These results are
obtained using a self-consistent scaling procedure that ensures
satisfaction of the virial theorem (SCVS).45 The possibility of
using theory to determine the potential energy of interaction
between a pair of linked fluorines is discussed in a footnote.46

Generalizing the Concept of Electron Pairing

The acceptance of the presence of a bond path as indicative
of bonding between two atoms does not require that one abandon
the idea of associating the pairing of electrons with bonding,
but only that one distinguish between the action of the pairing
of electrons and that of associating one pair of electrons per
bond. The pairing of electrons is a local phenomenon that varies
from point to point, a property determined by the conditional
pair density for same-spin electrons.47 This function so suc-
cessfully recovers the geometrical models associated with
differing numbers of valence electron pairs that form the basis
of the valence shell electron pair repulsion (VSEPR) model, it
has been termed the Lennard-Jones function or LJF.48 The
maxima in LJF show where the density of other same-spin
electrons is most likely to be found relative to a fixed position
of a reference electron e*. The resulting patterns of localization
are maximized when e* is placed at the position of a charge
concentration (CC) ofL(r ), the negative of the Laplacian of
the density. In this situation, in a closed-shell system, the
maxima denote regions of local pairing ofR andâ spin densities.
Thus, as previously demonstrated, the maxima inL(r ), its CCs,
determine the spatial domains where electron pairing occurs.47

Indeed, the electron density and LJF are found to yield identical
Laplacian distributions in those regions of space where the
density of the same spin electrons is most likely to be found
when e* is positioned at a CC in-∇2F.48,49

Because of the appearance ofL(r ) in the local expression of
the virial theorem eq 17, the formation of a local CC inL(r ) is

Figure 2. Contour maps of the electron densityF(r ) and of its Laplacian,∇2F(r ), for the minimum energy geometry of the ArCO2 van der Waals
complex. Contour values are the same as in Figure 1 with solid contours denoting regions of charge concentration (∇2F < 0), and dashed contours
denoting regions of charge depletion (∇2F > 0) in the Laplacian map. The map forF(r ) is overlaid with bond paths and the intersections of the
interatomic surfaces, the bond CPs being denoted by squares. The Ar is linked to the molecule by a bond path and by a virial path. The Laplacian
map shows that the CC, a (3,-3) CP in-∇2F, induced in the valence shell charge concentration (VSCC) of the Ar atom and indicated by an arrow,
is directed at the very marked region of charge depletion on the carbon atom, the interaction causing the appearance of a (3,+1) CP in the torus
of charge depletion encircling the carbon. All of the minimum energy geometries of the van der Waals complexes studied18 can be rationalized on
the basis of a CC on one molecule being aligned with a region of charge depletion on the other, the same behavior encountered in the formation
of hydrogen bonds or a Lewis acid-base pair.
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indicative of a lowering of the potential energy, as well as of a
pairing of electrons. Thus, the CCs inL(r ) formed as a result
of atomic interactions provide a link between the associated
pairing of electrons and energy stabilization. Because CCs
corresponding to the presence of nonbonding electron pairs are
also found, their formation also contributes to the lowering of
the energy.

In general, the localization of the pair density is less than
that required to localize individual pairs of electrons and then
not to a single region, conditions realized only in simple hydrides
such as LiH or BeH2.48 In closed-shell systems, the pairing
occurs within each atomic basin. The extent to which electrons
on one center are exchanged with those on another is measured
by the extent to which the Fermi hole of a given reference
electron is spread between the two atomic basins.50 In a shared
interaction, this can approach the exchange of one, two, and
three pairs of electrons, respectively, for single, double, and
triple bonds.51,52 Thus, as originally pictured by Lewis, one
has two extremes of bonding corresponding to the equal or
unequal sharing of an electron pair between two “kernels”.53

This idea is generalized to include a less than complete pairing
of the densities of two opposite spin electrons and for the pairing
to occur in more than a single spatial region.

Consider for example, the pairing of electrons that occurs in
the formation of weakly bound van der Waals molecules, as
revealed by the CCs formed in the valence shell charge
concentrations (VSCC) of the interacting atoms. In the equi-
librium geometry of Ar2, a torus of charge concentration, a torus
of (2,-2) CPS, encircling the axis is formed on the bonded
side of each atom, along with an axial CC on the nonbonded
side of slightly smaller magnitude. The formation of the van
der Waals molecule ArsCO2, Table 1 and Figure 2,also results
in the creation of similar bonding and nonbonding CCs in the
VSCC of Ar. The resulting distortions of the VSCCs are,
however, small. The magnitudes of the maxima induced in the
VSCC of argon in the formation of these weakly bound
molecules exceed those of the minima by only∼0.03 au,
compared to the much larger differences encountered in the
formation of stronger bonds, a difference amounting to 1.6 au
in the VSCC of Cl in ClF5, for example. Thus, the distortions
of the sphere of maximum charge concentration and the extent
of electron pairing are slight in the formation of van der Waals
molecules, reflecting their small binding energies. However,
the difference between a closed-shell interaction, weak or strong,
and a shared interaction is one of degree and not a result of a
differing mechanics of bond formation: both result from the
pairing of the densities of opposite-spin electrons and in the
formation of a bond and a virial path. The present practice of
distinguishing between “valency” and “coordination number”26

has relevance only with respect to the use of the Lewis model.

Conclusion

It has been shown that the only forces acting within a
molecule or a crystal are the Hellmann-Feynman forces exerted
on the nuclei and their appearance as forces of repulsion is a
result of twice the electronic kinetic energy exceeding the
magnitude of the potential energy, not as a result of the presence
of a repulsive potential energy. By definition, there are no
forces exerted on the nuclei of atoms linked by a bond path
and all vibrational motions result in attractive forces restoring
the system to its equilibrium geometry. All atomic interactions
demarcated by a bond path have a common quantum mechanical
origin in terms of the behavior of the force, potential energy,
and electron densities.54 Thus, the presence of a bond path and

its associated virial path provide a universal indicator of bonding
between atoms.

The adoption of the theory of atoms in molecules requires
the replacement of the model of structure that imparts an
existence to abondseparate from the atoms it linkssthe ball
and stick model or its orbital equivalents of atomic and overlap
contributionsswith the concept ofbondingbetween atoms; two
atoms are bonded if they share an interatomic surface and are
consequently linked by a bond path. In a sense, the interatomic
surface replaces the bond in the theory of atoms in molecules,
since it is through the exchange of electrons and the fluxes in
properties across this surface described by the physics of a
proper open system that atoms adjust to the presence of their
bonded neighbors.
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Such local maxima inF(r ) are found in systems with losely bound electrons
such as metals12 and for an electron trapped at an F-center.42
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